Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Biosci Biotechnol Biochem ; 87(9): 1029-1035, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37328425

RESUMEN

Triple-FLAG (3 × FLAG)-tagged proteins can be affinity purified through binding to an anti-FLAG antibody and competitive elution with excess free 3 × FLAG peptide. To expand the availability of the 3 × FLAG purification system, we produced a recombinant His-tagged 3 × FLAG peptide in Brevibacillus choshinensis. The screening of connecting linkers between His-tag and the 3 × FLAG peptide, culture containers, and culture media showed that the His-tagged 3 × FLAG peptide with an LA linker was most expressed in 2SY medium using a baffled shake flask. The peptide was affinity-purified to give a yield of about 25 mg/L of culture. The peptide was effective for eluting 3 × FLAG-tagged α-amylase from anti-FLAG magnetic beads. Finally, the peptide remaining in the amylase fraction was removed by His-tag affinity purification. These results show that the recombinant His-tagged 3 × FLAG peptide can function as an easy-to-remove affinity peptide in the 3 × FLAG purification system.


Asunto(s)
Brevibacillus , Proteínas Recombinantes/metabolismo , Brevibacillus/genética , Brevibacillus/metabolismo , Cromatografía de Afinidad/métodos , Péptidos/genética , Péptidos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
3.
ACS ES T Water ; 2(11): 1899-1909, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36380771

RESUMEN

Wastewater-based epidemiology has emerged as a promising technology for population-level surveillance of COVID-19. In this study, we present results of a large nationwide SARS-CoV-2 wastewater monitoring system in the United States. We profile 55 locations with at least six months of sampling from April 2020 to May 2021. These locations represent more than 12 million individuals across 19 states. Samples were collected approximately weekly by wastewater treatment utilities as part of a regular wastewater surveillance service and analyzed for SARS-CoV-2 RNA concentrations. SARS-CoV-2 RNA concentrations were normalized to pepper mild mottle virus, an indicator of fecal matter in wastewater. We show that wastewater data reflect temporal and geographic trends in clinical COVID-19 cases and investigate the impact of normalization on correlations with case data within and across locations. We also provide key lessons learned from our broad-scale implementation of wastewater-based epidemiology, which can be used to inform wastewater-based epidemiology approaches for future emerging diseases. This work demonstrates that wastewater surveillance is a feasible approach for nationwide population-level monitoring of COVID-19 disease. With an evolving epidemic and effective vaccines against SARS-CoV-2, wastewater-based epidemiology can serve as a passive surveillance approach for detecting changing dynamics or resurgences of the virus.

4.
Water Res ; 212: 118070, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35101695

RESUMEN

Wastewater surveillance has emerged as a useful tool in the public health response to the COVID-19 pandemic. While wastewater surveillance has been applied at various scales to monitor population-level COVID-19 dynamics, there is a need for quantitative metrics to interpret wastewater data in the context of public health trends. 24-hour composite wastewater samples were collected from March 2020 through May 2021 from a Massachusetts wastewater treatment plant and SARS-CoV-2 RNA concentrations were measured using RT-qPCR. The relationship between wastewater copy numbers of SARS-CoV-2 gene fragments and COVID-19 clinical cases and deaths varies over time. We demonstrate the utility of three new metrics to monitor changes in COVID-19 epidemiology: (1) the ratio between wastewater copy numbers of SARS-CoV-2 gene fragments and clinical cases (WC ratio), (2) the time lag between wastewater and clinical reporting, and (3) a transfer function between the wastewater and clinical case curves. The WC ratio increases after key events, providing insight into the balance between disease spread and public health response. Time lag and transfer function analysis showed that wastewater data preceded clinically reported cases in the first wave of the pandemic but did not serve as a leading indicator in the second wave, likely due to increased testing capacity, which allows for more timely case detection and reporting. These three metrics could help further integrate wastewater surveillance into the public health response to the COVID-19 pandemic and future pandemics.


Asunto(s)
COVID-19 , Pandemias , Benchmarking , Humanos , ARN Viral , SARS-CoV-2 , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales
5.
Sci Total Environ ; 805: 150121, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34534872

RESUMEN

Current estimates of COVID-19 prevalence are largely based on symptomatic, clinically diagnosed cases. The existence of a large number of undiagnosed infections hampers population-wide investigation of viral circulation. Here, we quantify the SARS-CoV-2 concentration and track its dynamics in wastewater at a major urban wastewater treatment facility in Massachusetts, between early January and May 2020. SARS-CoV-2 was first detected in wastewater on March 3. SARS-CoV-2 RNA concentrations in wastewater correlated with clinically diagnosed new COVID-19 cases, with the trends appearing 4-10 days earlier in wastewater than in clinical data. We inferred viral shedding dynamics by modeling wastewater viral load as a convolution of back-dated new clinical cases with the average population-level viral shedding function. The inferred viral shedding function showed an early peak, likely before symptom onset and clinical diagnosis, consistent with emerging clinical and experimental evidence. This finding suggests that SARS-CoV-2 concentrations in wastewater may be primarily driven by viral shedding early in infection. This work shows that longitudinal wastewater analysis can be used to identify trends in disease transmission in advance of clinical case reporting, and infer early viral shedding dynamics for newly infected individuals, which are difficult to capture in clinical investigations.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , ARN Viral , Esparcimiento de Virus , Aguas Residuales
6.
Artículo en Inglés | MEDLINE | ID: mdl-34927170

RESUMEN

Accurate estimates of COVID-19 burden of infections in communities can inform public health strategy for the current pandemic. Wastewater based epidemiology (WBE) leverages sewer infrastructure to provide insights on rates of infection by measuring viral concentrations in wastewater. By accessing the sewer network at various junctures, important insights regarding COVID-19 disease activity can be gained. The analysis of sewage at the wastewater treatment plant level enables population-level surveillance of disease trends and virus mutations. At the neighborhood level, WBE can be used to describe trends in infection rates in the community thereby facilitating local efforts at targeted disease mitigation. Finally, at the building level, WBE can suggest the presence of infections and prompt individual testing. In this critical review, we describe the types of data that can be obtained through varying levels of WBE analysis, concrete plans for implementation, and public health actions that can be taken based on WBE surveillance data of infectious diseases, using recent and successful applications of WBE during the COVID-19 pandemic for illustration.

7.
J Med Toxicol ; 17(4): 397-410, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34402038

RESUMEN

During the current global COVID-19 pandemic and opioid epidemic, wastewater-based epidemiology (WBE) has emerged as a powerful tool for monitoring public health trends by analysis of biomarkers including drugs, chemicals, and pathogens. Wastewater surveillance downstream at wastewater treatment plants provides large-scale population and regional-scale aggregation while upstream surveillance monitors locations at the neighborhood level with more precise geographic analysis. WBE can provide insights into dynamic drug consumption trends as well as environmental and toxicological contaminants. Applications of WBE include monitoring policy changes with cannabinoid legalization, tracking emerging illicit drugs, and early warning systems for potent fentanyl analogues along with the resurging wave of stimulants (e.g., methamphetamine, cocaine). Beyond drug consumption, WBE can also be used to monitor pharmaceuticals and their metabolites, including antidepressants and antipsychotics. In this manuscript, we describe the basic tenets and techniques of WBE, review its current application among drugs of abuse, and propose methods to scale and develop both monitoring and early warning systems with respect to measurement of illicit drugs and pharmaceuticals. We propose new frontiers in toxicological research with wastewater surveillance including assessment of medication assisted treatment of opioid use disorder (e.g., buprenorphine, methadone) in the context of other social burdens like COVID-19 disease.


Asunto(s)
Biomarcadores/análisis , Drogas Ilícitas/análisis , Preparaciones Farmacéuticas/análisis , Detección de Abuso de Sustancias/métodos , Monitoreo Epidemiológico Basado en Aguas Residuales , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , COVID-19/epidemiología , Humanos , Pandemias , SARS-CoV-2 , Trastornos Relacionados con Sustancias/epidemiología
8.
Water Res ; 202: 117400, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34274898

RESUMEN

Wastewater-based disease surveillance is a promising approach for monitoring community outbreaks. Here we describe a nationwide campaign to monitor SARS-CoV-2 in the wastewater of 159 counties in 40 U.S. states, covering 13% of the U.S. population from February 18 to June 2, 2020. Out of 1,751 total samples analyzed, 846 samples were positive for SARS-CoV-2 RNA, with overall viral concentrations declining from April to May. Wastewater viral titers were consistent with, and appeared to precede, clinical COVID-19 surveillance indicators, including daily new cases. Wastewater surveillance had a high detection rate (>80%) of SARS-CoV-2 when the daily incidence exceeded 13 per 100,000 people. Detection rates were positively associated with wastewater treatment plant catchment size. To our knowledge, this work represents the largest-scale wastewater-based SARS-CoV-2 monitoring campaign to date, encompassing a wide diversity of wastewater treatment facilities and geographic locations. Our findings demonstrate that a national wastewater-based approach to disease surveillance may be feasible and effective.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brotes de Enfermedades , Humanos , ARN Viral , Aguas Residuales
9.
medRxiv ; 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34159339

RESUMEN

Wastewater surveillance has emerged as a useful tool in the public health response to the COVID-19 pandemic. While wastewater surveillance has been applied at various scales to monitor population-level COVID-19 dynamics, there is a need for quantitative metrics to interpret wastewater data in the context of public health trends. We collected 24-hour composite wastewater samples from March 2020 through May 2021 from a Massachusetts wastewater treatment plant and measured SARS-CoV-2 RNA concentrations using RT-qPCR. We show that the relationship between wastewater viral titers and COVID-19 clinical cases and deaths varies over time. We demonstrate the utility of three new metrics to monitor changes in COVID-19 epidemiology: (1) the ratio between wastewater viral titers and clinical cases (WC ratio), (2) the time lag between wastewater and clinical reporting, and (3) a transfer function between the wastewater and clinical case curves. We find that the WC ratio increases after key events, providing insight into the balance between disease spread and public health response. We also find that wastewater data preceded clinically reported cases in the first wave of the pandemic but did not serve as a leading indicator in the second wave, likely due to increased testing capacity. These three metrics could complement a framework for integrating wastewater surveillance into the public health response to the COVID-19 pandemic and future pandemics.

10.
Artículo en Inglés | MEDLINE | ID: mdl-34052556

RESUMEN

Pharmaceutical compounds ingested by humans are metabolized and excreted in urine and feces. These metabolites can be quantified in wastewater networks using wastewater-based epidemiology (WBE) methods. Standard WBE methods focus on samples collected at wastewater treatment plants (WWTPs). However, these methods do not capture more labile classes of metabolites such as glucuronide conjugates, products of the major phase II metabolic pathway for drug elimination. By shifting sample collection more upstream, these unambiguous markers of human exposure are captured before hydrolysis in the wastewater network. In this paper, we present an HPLC-MS/MS method that quantifies 8 glucuronide conjugates in addition to 31 parent and other metabolites of prescription and synthetic opioids, overdose treatment drugs, illicit drugs, and population markers. Calibration curves for all analytes are linear (r2 > 0.98), except THC (r2 = 0.97), and in the targeted range (0.1-1,000 ng mL-1) with lower limits of quantification (S/N = 9) ranging from 0.098 to 48.75 ng mL-1. This method is fast with an injection-to-injection time of 7.5 min. We demonstrate the application of the method to five wastewater samples collected from a manhole in a city in eastern Massachusetts. Collected wastewater samples were filtered and extracted via solid-phase extraction (SPE). The SPE cartridges are eluted and concentrated in the laboratory via nitrogen-drying. The method and case study presented here demonstrate the potential and application of expanding WBE to monitoring labile metabolites in upstream wastewater networks.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Glucurónidos/análisis , Preparaciones Farmacéuticas/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos
11.
medRxiv ; 2021 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-33758888

RESUMEN

Wastewater-based disease surveillance is a promising approach for monitoring community outbreaks. Here we describe a nationwide campaign to monitor SARS-CoV-2 in the wastewater of 159 counties in 40 U.S. states, covering 13% of the U.S. population from February 18 to June 2, 2020. Out of 1,751 total samples analyzed, 846 samples were positive for SARS-CoV-2 RNA, with overall viral concentrations declining from April to May. Wastewater viral titers were consistent with, and appeared to precede, clinical COVID-19 surveillance indicators, including daily new cases. Wastewater surveillance had a high detection rate (>80%) of SARS-CoV-2 when the daily incidence exceeded 13 per 100,000 people. Detection rates were positively associated with wastewater treatment plant catchment size. To our knowledge, this work represents the largest-scale wastewater-based SARS-CoV-2 monitoring campaign to date, encompassing a wide diversity of wastewater treatment facilities and geographic locations. Our findings demonstrate that a national wastewater-based approach to disease surveillance may be feasible and effective.

12.
Circ J ; 85(5): 612-622, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33536402

RESUMEN

BACKGROUND: This study investigated the effect of outpatient cardiac rehabilitation (OCR) and physical activity on the estimated glomerular filtration rate based on serum cystatin C (eGFRcys) in patients with heart disease (HD) aged ≥75 years.Methods and Results:This non-randomized prospective intervention study involved 136 patients (non-OCR group, n=66; OCR group, n=70), 55 of whom were aged ≥75 years (non-OCR group, n=29; OCR group, n=26). Renal function (eGFRcys) was evaluated at discharge and 3 months thereafter. A linear mixed model (LMM) was used to assess changes in renal function over time. The hospital readmission rate within 3 months after discharge was also evaluated. LMM analysis showed that the change in eGFRcys was -2.27 and +0.48 mL/min/1.73 m2in the non-OCR and OCR groups, respectively (F=2.960, P=0.022). Further, among patients aged ≥75 years in the non-OCR and OCR groups, the change in eGFRcys was -3.83 and -1.08 mL/min/1.73 m2, respectively (F=2.719, P=0.039). The proportion of patients aged ≥75 years who were rehospitalized due to exacerbation of HD was 16.9% (n=10) and 6.7% (n=2) in the non-OCR and OCR groups, respectively. CONCLUSIONS: Among patients with HD aged ≥75 years, participation in OCR reduces the decline in renal function and hospital readmission rates.


Asunto(s)
Rehabilitación Cardiaca , Cardiopatías , Anciano , Creatinina , Tasa de Filtración Glomerular , Humanos , Riñón/fisiología , Pacientes Ambulatorios , Estudios Prospectivos
13.
mSystems ; 5(4)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32694130

RESUMEN

Wastewater surveillance represents a complementary approach to clinical surveillance to measure the presence and prevalence of emerging infectious diseases like the novel coronavirus SARS-CoV-2. This innovative data source can improve the precision of epidemiological modeling to understand the penetrance of SARS-CoV-2 in specific vulnerable communities. Here, we tested wastewater collected at a major urban treatment facility in Massachusetts and detected SARS-CoV-2 RNA from the N gene at significant titers (57 to 303 copies per ml of sewage) in the period from 18 to 25 March 2020 using RT-qPCR. We validated detection of SARS-CoV-2 by Sanger sequencing the PCR product from the S gene. Viral titers observed were significantly higher than expected based on clinically confirmed cases in Massachusetts as of 25 March. Our approach is scalable and may be useful in modeling the SARS-CoV-2 pandemic and future outbreaks.IMPORTANCE Wastewater-based surveillance is a promising approach for proactive outbreak monitoring. SARS-CoV-2 is shed in stool early in the clinical course and infects a large asymptomatic population, making it an ideal target for wastewater-based monitoring. In this study, we develop a laboratory protocol to quantify viral titers in raw sewage via qPCR analysis and validate results with sequencing analysis. Our results suggest that the number of positive cases estimated from wastewater viral titers is orders of magnitude greater than the number of confirmed clinical cases and therefore may significantly impact efforts to understand the case fatality rate and progression of disease. These data may help inform decisions surrounding the advancement or scale-back of social distancing and quarantine efforts based on dynamic wastewater catchment-level estimations of prevalence.

14.
medRxiv ; 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32607521

RESUMEN

Current estimates of COVID-19 prevalence are largely based on symptomatic, clinically diagnosed cases. The existence of a large number of undiagnosed infections hampers population-wide investigation of viral circulation. Here, we use longitudinal wastewater analysis to track SARS-CoV-2 dynamics in wastewater at a major urban wastewater treatment facility in Massachusetts, between early January and May 2020. SARS-CoV-2 was first detected in wastewater on March 3. Viral titers in wastewater increased exponentially from mid-March to mid-April, after which they began to decline. Viral titers in wastewater correlated with clinically diagnosed new COVID-19 cases, with the trends appearing 4-10 days earlier in wastewater than in clinical data. We inferred viral shedding dynamics by modeling wastewater viral titers as a convolution of back-dated new clinical cases with the viral shedding function of an individual. The inferred viral shedding function showed an early peak, likely before symptom onset and clinical diagnosis, consistent with emerging clinical and experimental evidence. Finally, we found that wastewater viral titers at the neighborhood level correlate better with demographic variables than with population size. This work suggests that longitudinal wastewater analysis can be used to identify trends in disease transmission in advance of clinical case reporting, and may shed light on infection characteristics that are difficult to capture in clinical investigations, such as early viral shedding dynamics.

15.
Pharmacol Res Perspect ; 7(1): e00451, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30598826

RESUMEN

We investigated whether combination therapy of G-CSF and erythropoietin (EPO)-liposome with Siaryl Lewis X (SLX) is more cardioprotective than G-CSF or EPO-liposome with SLX alone. For the purpose of generating myocardial infarction (MI), rabbits underwent 30 minutes of coronary occlusion and 14 days of reperfusion. We administered saline (control group, i.v.,), G-CSF (G group, 10 µg/kg/day × 5 days, i.c., starting at 24 hours after reperfusion), EPO-liposome with SLX (LE group, i.v., 2500 IU/kg EPO containing liposome with SLX, immediately after reperfusion), and G-CSF + EPO-liposome with SLX (LE + G group) to the rabbits. The MI size was the smallest in the LE+G group (14.7 ± 0.8%), and smaller in the G group (22.4 ± 1.5%) and LE group (18.5 ± 1.1%) than in the control group (27.8 ± 1.5%). Compared with the control group, the cardiac function and remodeling of the G, LE, and LE + G groups were improved, and LE + G group tended to show the best improvement. The number of CD31-positive microvessels was the greatest in the LE + G group, greater in the G and LE groups than in the control group. Higher expressions of phosphorylated (p)-Akt and p-ERK were observed in the ischemic area of the LE and LE + G groups. The number of CD34+/CXCR4+ cells was significantly higher in the G and LE + G groups. The cardiac SDF-1 was more expressed in the G and LE + G groups. In conclusion, Post-MI combination therapy with G-CSF and EPO-liposome with SLX is more cardioprotective than G-CSF or EPO-liposome with SLX alone through EPCs mobilization, neovascularization, and activation of prosurvival signals.


Asunto(s)
Células Progenitoras Endoteliales/fisiología , Eritropoyetina/farmacología , Factor Estimulante de Colonias de Granulocitos/farmacología , Infarto del Miocardio/tratamiento farmacológico , Cicatrización de Heridas/efectos de los fármacos , Animales , Vasos Coronarios/citología , Vasos Coronarios/efectos de los fármacos , Modelos Animales de Enfermedad , Composición de Medicamentos/métodos , Quimioterapia Combinada/métodos , Ecocardiografía , Células Progenitoras Endoteliales/efectos de los fármacos , Eritropoyetina/uso terapéutico , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Corazón/efectos de los fármacos , Liposomas , Masculino , Microvasos/citología , Microvasos/efectos de los fármacos , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/etiología , Neovascularización Fisiológica/efectos de los fármacos , Oligosacáridos/química , Conejos , Regeneración/efectos de los fármacos , Antígeno Sialil Lewis X , Resultado del Tratamiento
17.
Lancet Planet Health ; 2(9): e406-e413, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30177009

RESUMEN

BACKGROUND: Many large dams are constructed annually in Africa, with associated reservoirs that might exacerbate the risk of malaria in new villages built nearby. We aimed to investigate the heterogeneous risk of malaria around reservoirs related to the impact of wind direction on malaria transmission. METHODS: Between June 15, 2012, and April 22, 2015, we obtained field data on climate and hydrological conditions, and monitored Anopheles mosquito populations around the Koka reservoir in Ethiopia using in-situ weather stations, mosquito light traps, and larval dipping. The field data were used to calibrate a field-tested, spatially explicit mechanistic malaria transmission model, the Hydrology, Entomology, and Malaria Transmission Simulator (HYDREMATS), to investigate the effect of relative wind direction on malaria transmission and associated mechanisms. We combined our simulation results and observational data to assess the association between village location around a reservoir and risk of malaria. FINDINGS: HYDREMATS simulations showed that wind blowing from a village towards a reservoir increases the size of malaria vector populations, whereas wind blowing from a reservoir towards a village decreases the size of malaria vector populations, which was consistent with our field data. Larval mortality is low in locations with village-to-reservoir wind due to weak surface waves, and this wind direction creates conditions that enable mosquitoes to identify village locations more easily than in conditions caused by reservoir-to-village wind, which increases the size of malaria vector populations, and thus malaria transmission. Among the wind conditions investigated (0·5-5 m/s), the effect of CO2 attraction on the size of the Anopheles population was largest at wind speeds of 0·5 m/s and 1 m/s, decreasing with higher wind speed. At a wind speed of 5 m/s, the effect of CO2 attraction was negligible, whereas the effect of waves was strongest. The effect of advection on Anopheles population size was negligible at all wind speeds and wind directions. INTERPRETATION: The effect of wind on malaria transmission around reservoirs can be substantial. The transmission of malaria can be minimised if the location of villages situated near a reservoir is carefully considered. For areas in which the environmental conditions surrounding a resevoir are equal, villages should be located downwind of reservoirs to reduce the incidence of malaria, although further research will be required in locations where wind direction changes in different seasons. FUNDING: US National Science Foundation, and Cooperative Agreement between the Masdar Institute of Science and Technology, Abu Dhabi, UAE, and the Massachusetts Institute of Technology, Cambridge, MA, USA.


Asunto(s)
Anopheles/fisiología , Transmisión de Enfermedad Infecciosa/prevención & control , Lagos , Malaria/transmisión , Distribución Animal , Animales , Etiopía , Geografía , Dinámica Poblacional , Riesgo , Abastecimiento de Agua , Viento
18.
Malar J ; 17(1): 48, 2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29370803

RESUMEN

BACKGROUND: Wind conditions, as well as other environmental conditions, are likely to influence malaria transmission through the behaviours of Anopheles mosquitoes, especially around water-resource reservoirs. Wind-induced waves in a reservoir impose mortality on aquatic-stage mosquitoes. Mosquitoes' host-seeking activity is also influenced by wind through dispersion of [Formula: see text]. However, no malaria transmission model exists to date that simulated those impacts of wind mechanistically. METHODS: A modelling framework for simulating the three important effects of wind on the behaviours of mosquito is developed: attraction of adult mosquitoes through dispersion of [Formula: see text] ([Formula: see text] attraction), advection of adult mosquitoes (advection), and aquatic-stage mortality due to wind-induced surface waves (waves). The framework was incorporated in a mechanistic malaria transmission simulator, HYDREMATS. The performance of the extended simulator was compared with the observed population dynamics of the Anopheles mosquitoes at a village adjacent to the Koka Reservoir in Ethiopia. RESULTS: The observed population dynamics of the Anopheles mosquitoes were reproduced with some reasonable accuracy in HYDREMATS that includes the representation of the wind effects. HYDREMATS without the wind model failed to do so. Offshore wind explained the increase in Anopheles population that cannot be expected from other environmental conditions alone. CONCLUSIONS: Around large water bodies such as reservoirs, the role of wind in the dynamics of Anopheles population, hence in malaria transmission, can be significant. Modelling the impacts of wind on the behaviours of Anopheles mosquitoes aids in reproducing the seasonality of malaria transmission and in estimation of the risk of malaria around reservoirs.


Asunto(s)
Anopheles/fisiología , Malaria/transmisión , Modelos Biológicos , Mosquitos Vectores/fisiología , Viento , Animales , Simulación por Computador , Dinámica Poblacional , Recursos Hídricos
19.
Geohealth ; 2(3): 104-115, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32159012

RESUMEN

New dam construction is known to exacerbate malaria transmission in Africa as the vectors of malaria-Anopheles mosquitoes-use bodies of water as breeding sites. Precise environmental mechanisms of how reservoirs exacerbate malaria transmission are yet to be identified. Understanding of these mechanisms should lead to a better assessment of the impacts of dam construction and to new prevention strategies. Combining extensive multiyear field surveys around the Koka Reservoir in Ethiopia and rigorous model development and simulation studies, environmental mechanisms of malaria transmission around the reservoir were examined. Most comprehensive and detailed malaria transmission model, Hydrology, Entomology, and Malaria Transmission Simulator, was applied to a village adjacent to the reservoir. Significant contributions to the dynamics of malaria transmission are shaped by wind profile, marginal pools, temperature, and shoreline locations. Wind speed and wind direction influence Anopheles populations and malaria transmission during the major and secondary mosquito seasons. During the secondary mosquito season, a noticeable influence was also attributed to marginal pools. Temperature was found to play an important role, not so much in Anopheles population dynamics, but in malaria transmission dynamics. Change in shoreline locations drives malaria transmission dynamics, with closer shoreline locations to the village making malaria transmission more likely. Identified environmental mechanisms help in predicting malaria transmission seasons and in developing village relocation strategies upon dam construction to minimize the risk of malaria.

20.
Malar J ; 15(1): 578, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27903266

RESUMEN

BACKGROUND: Malaria transmission is complex, involving a range of hydroclimatological, biological, and environmental processes. The high degree of non-linearity in these processes makes it difficult to predict and intervene against malaria. This study seeks both to define a minimal number of malaria transmission determinants, and to provide a theoretical basis for sustainable environmental manipulation to prevent malaria transmission. METHODS: Using a field-tested mechanistic malaria model, HYDREMATS, a theoretical study was conducted under hypothetical conditions. Simulations were conducted with a range of hydroclimatological and environmental conditions: temperature (t), length of wet season (Twet), storm inter-arrival time (Tint), persistence of vector breeding pools (Ton), and distribution of houses from breeding pools and from each other (Xdist and Ydist, respectively). Based on the theoretical study, a malaria time scale, To, and a predictive theory of malaria transmission were introduced. The performance of the predictive theory was compared against the observational malaria transmission data in West Africa. Population density was used to estimate the scale that describes the spatial distribution of houses. RESULTS: The predictive theory shows a universality in malaria endemic conditions when plotted using two newly-introduced dimension-less parameters. The projected malaria transmission potential compared well with the observation data, and the apparent differences were discussed. The results illustrate the importance of spatial aspects in malaria transmission. CONCLUSIONS: The predictive theory is useful in measuring malaria transmission potential, and it can also provide guidelines on how to plan the layout of human habitats in order to prevent endemic malaria. Malaria-resistant villages can be designed by locating houses further than critical distances away from breeding pools or by removing pools within a critical distance from houses; the critical distance is described in the context of local climatology and hydrology.


Asunto(s)
Ambiente , Malaria/transmisión , África Occidental , Humanos , Modelos Teóricos , Población Rural
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...